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The multi-centre integrals of the orbital system A"~m(V) exp ( - r  2) are evalu- 
ated using the Talmi transformation of nuclear shell theory. The integrals are 
simpler than those of the systems r2~m(r)  exp( - r~) ,  xZymz"exp(-r2), 
(O/~x)Z(~/Oy)m(O/Oz)~exp ( - r  2) and the spherical oscillator functions. The 
integral types investigated are: overlap, electric dipole transition (momentum 
operator), kinetic energy, three-centre nuclear attraction, four-centre electronic 
repulsion, three-centre spin-orbit coupling, and magnetic dipole transition 
(three-centre integrals of the angular momentum operator). 

Key words: Multi-centre integrals-Gauss-Laguerre orbitals-Talmi-Trans- 
formation - Generalized gradient operator. 

1. Introduction 

In a previous paper [1] the group theoretical or tensor algebraic advantage of using 
spherical orbitals has been discussed and the integrals of the spherical Gauss type 
orbitals (GTOs) r2n~m(r ) exp ( - r  2) with ~m(r) = (ir)ZYzm(r/r) have been evalu- 
ated using the Talmi transformation. The same has been done by Maretis [2] for 
the orthonormal system of the spherical oscillator orbitals. When we now call 
attention to a further related orbital system, it is because of a remarkable simplifica- 
tion of the multi-centre integrals. The new system generated by the gradient oper- 
ator An~m(V ) exp(-- r  2) combines the advantages of the ordinary spherical 
Gaussians and of the Cartesian system (~/~X)t(~3l~y)m(O/~Z) n exp ( - r  2) discussed by 
several authors [3]. We shall closely follow [1] in proceeding and notation and shall 
not repeat details already given there. The analogous entities of both orbital systems 
are termed by the same symbols and distinguished in this paper by an index 
zero. 
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2. The Properties of  the Orbital Functions 

We define the orbitals dimensionlessly by 

(r l  o~nlm) = c~-2"-zA"~m(V) exp ( - ~ ' r  2) 

= (~-W)2"~m(c~-W) exp (-c~2r2). (2.1) 

The generalized gradient operator ~ ( V )  has been discussed in [4]. As in [1] we 
want to split up the orbitals in the following form: 

(r ] o~nlm) = ~o~ nl, r)(~r [ sol lm) (2.2) 

with the solid harmonic (note the phase t): 

<r [ sol lm> = (ir) z r,m(r/r). (2.3) 

For  convenience we distinguish (r  [ sol lm> for ordinary functions and ~ ( V )  for 
the gradient operator. 

With theorem (11) of  [4] it is possible to evaluate ~o(a, 0l, r):  

_2,[1 d ) '  ~o~ 0l, r) = ~ ~,7"& exp ( -c~r=)  = ( - 2 ) '  exp (-~=r=). (2.4) 

From the definition (2.1) follows the recursion 

lo,m + llm> = (1/,~2)Alo,mlm>. 

This yields for the radial part: 

rp~ + 1)l,r) -- (l/a2)( 2(l-+ 1) d 
r dr 

(2.5) 

This latter recursion leads to  the Gauss-Laguerre type functions 

~o~ nl, r) = ( - 1) ~ + z22~ + z- n !. L~ + 1/2(~2r 2). exp ( - ~2r 2). (2.7) 

It may be convenient to list the explicit orbital functions for the lower main 
quantum numbers in terms of the Condon-Short ley spherical harmonics. Because 
the degree of the radial polynoms depends on n only, we can give them for arbitrary 
angular momentum 1. From (2.1) or from (2.2/3/7) we get: 

(r[oc~Olm) = (-2i~r)Z.exp (-~2r2) .  Ylm(r/r), 
(r ] o~llm) = --4(--2i~r) '-exp (--c~2r2)[l + 3/2 -- c~2r2] �9 Yzm(r/r ), 
(r I o~21m) = 16(-2i~r)  z.exp (-~2r2)[(l  + 5/2)(l + 3/2) 

- 2(l + 5/2)c~2r 2 + ~4r~]. Yzm(r/r), 
(r ] occ3lm) = -64(-2ic~r)~.exp (-c~2r2)[(I + 7 /2) ( /+  5/2)(l + 3/2) 

- 3(I + 7/2)(l + 5/2)~2r 2 + 3(l + 7/2)cdr ~ - c~6r6] �9 Yzm(r/r), 
(r ] oc~41m) = 256(-2i~r)Z.exp (-a2r2)[( l  + 9/2)(1 + 7/2)(l + 5/2)(l + 3/2) 

- 4(l + 9/2)(l + 7/2)(l + 5/2)~2r 2 + 6(I + 9/2)(l + 7/2)c~r ~ 

- 4(1 + 9/2)c~6r 6 + c~8r8] �9 Yzm(r/r). 

These functions differ from the eigenfunctions of  the spherical, harmonic oscillator 
by the factor exp (-~2r2/2) and therefore do not form an orthogonal system. The 

+ dr 2 q~ ( , nl, r). (2.6) 
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same is true for the derivative, Cartesian system [3]. Instead the orbitals (2.1) and 
the functionals 

<o'an!m l r> = (-1)"+'2-2"-z+z(aa/P(n + l + 3/2))L~+ lt2(~2rZ)<sol Im l flr> 
(2.8) 

form a biorthogonal system. Thus an expansion theorem holds 

lg> = ~ <o'anlm ] g>. [oanlm> (2.9) 
~[ra 

provided that the integrals (o'anlm [ g> exist. 

Because of  the relation to the confluent, hypergeometric function 

L~+~,2(x ) = (n + l+n 1/2) 1Fl(-n' l + 3/2;x)  (2.10) 

we can write 

qoo(~,nl, r ) = (_1) ,+,22,+,  F(n + l + 3/2) F(l + 3/2) .1Fl(-n, l + 3/2; a2r 2) exp (-~2r=) 

= ( -  1)" +'22" +' e(n + l + 3/2) 
�9 P(l + 3/2) 1Fl(n + l + 3/2, l + 3/2; -a2r2).  

(2.11) 

This representation allows the extension of the definition of ~o ~ and <r ] o~nlm> to 
the index n = - 1, so that 

(1/c~=)AIoc~- llm> = lo~Olm> (2.12) 

appears as a special case of (2.5). The functions ~o(~, _ 1l, r) are the higher 
transcendental functions always occurring in the theory of GTOs. According to 
(5.2) of [1] they can be expressed by the integrals 

F~(t) = u 2m exp ( -  tu 2) du (2.13) 
0 

or the incomplete gamma functions: 

q~~ - 1 l, r)  = ( - 2)' - aF,(a2r 2) 
= (-2) '-l(~r)-2z-ly(l + 1/2, a2r2)/2. (2.14) 

For  more details on these functions we refer to [1] and only add a reference con- 
cerning the effective computation of the functions F~(t): [5]. The combined relation 
(2.5/11) will be of importance for the nuclear attraction integral�9 

From the multiplication theorem of spherical harmonics follows the relation 

( L+Mmlm21~12 ) A(,~ +,2_ L,/2~/LM(V ) (2.15) = <L]l111It=> 

and therefore 

(Mrnlm2L+lll2).]o%n + (ll + 12 - L)/2,LM>. a-q~,m,(V)[o~nl2m2} = ~ <LII/111/2> 

(2.16) 
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A special case of this relation is 

(L+l l )  "[~ + (l + - L)/2, LM).  a- W ,  lo~n/m ) = (4~r/3) 1'2 ~ (L][ l lll) 

(2.17) 

As a final property of the orbitals ]oc~nlm) we need the integral 

f ( r  o,mlm)d~r = ~(n, 0) 8(l, 0) ~(m, 0).(~/2~a). I (2. 18) 

Together with (2.5/11) this relation yields most of the superiority of the new orbital 
system over the ordinary spherical GTOs and oscillator functions. 

3. The Talmi Transformation 

The central theorems of [1 ] are related to the Talmi transformation of the functions 
r 2~(r I sol lm) according to a special rotation in six-dimensional space: 

ra = rl cos ~0 - r2 sin 

r~ = rl sin 9~ + r2 cos ~o. (3.1) 

This rotation is accompanied by 

Va = cos ~.V1 - sin ~.V2 

V 4 = sin 9~.V1 + cos cp.V2. (3.2) 

We therefore get according to (3.3) of [1]: 

n3137~414 L 

l [ l+ L ,~ ,~ 
" \mlmzMlflzL+~tmam,M ) ~xaa~3r~a(Va)" A~'~'m'(V')" 

(3.3) 

The expansion coefficients [nflanfl4Lll~l]nfllnfl2L] are related to the Moshinsky- 
Smirnov coefficients of nuclear physics. For the definition, properties, evaluation, 
references and programs we refer to [1]. Here we only mention the condition for the 
non-zero coefficients: 2na + 13 + 2 n 4 +  14=2n~ +I1  + 2 n 2 + 1 2 .  If we now 
apply (3.3) to the equation exp ( - r ~  - r~) = exp ( - r a  2 - r~), we get for the 
orbitals defined by (2.1) the same transformation as for ordinary, spherical Gauss- 
ians: 

(rl I olnll~m~)(r2 ] olnfl2mz) = ~ ~ [nalanfl, Lllrllnlllnfl2Z] 
7t313n414L 

\m m M !  m m,M} I oi. t m > 

�9 (r4 I o lnf l4m~) .  (3.4) 

In the same way as in [1] we derive by some substitutions the theorems concerning 
the translated orbitals 

( r [  oAc~n~am~) = (r - A [ oc, n~am~). (3.5) 
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On this occasion we introduce some functions of  the orbital  scaling factors:  

~ = arctan (~/fi), O~ e = (,2 + ~2)~12, ~ = afl(~2 + fl2)-~f L 

For  a two-centre density we thus derive 

(oA~naam~ ] r ) (r  I oBfinbbmb) = ~ ~ [NJnppLllqJ~e]ln~anbbL ] m~m~M 
NjnI~t~L 

J~p+L AB " ( M  re,M) ( I ~  ] ~ 

(3.6) 

with AB = B - A and the weighed mean point  P = (c~2A + f12B)/(~2 + f12). And 
for  two orbitals of  different particles we get: 

(r, ] oPcrn,pmp)(rz I oQrnqqmq) = ~ ~ [NJnrrLtl%~lln,pnqqL ] mvmqM 
NJnrrL 

[J+r+L\  
�9 [MmrM)(r l  - rz 1o, QP, eozNJM) 

"((~r2rl + rZr2)/( ~2 + ~'~)1 oRO,,n,rm,) 
(3.7) 

with R = (e2P + ,~2Q)/(,~2 + ,~2). 

We are now prepared to calculate the integrals. 

4. Overlap and Related Integrals 

By integrat ion over (3.6) and using (2.18) we get immediately the overlap integral 

o a bL 
(oA~n~am~ [ oBflnbbmb) = ~ e~e(n~nb, Lab, AB) m~mbM (~BAB I s o l L M ) ,  

L 

(4.1) 

where the tensorial invariants o f  the integral are given by 

e~ Lab, AB) = [NLOOUX~llnoanbbL](2L + 1)- 1/~o~ NL, AB).,~/205 
(4.2) 

with N = n~ + nb + (a + b - L)/2. In compar ison  to [1, 2] there are two simpli- 
fications in ~0 : I t  contains no sum and the coefficients at the right have two zeros. 

For  the kinetic energy integral we derive because of  (2.5): 

(oAan~ama] - (1/2)AIoBfln~bmb) 

= - (fl2/2) ~L e~ + 1, Lab, AB)(\m~m~Ma+bL+~]f(~e AB .I sol L M ) .  (4.3) 

Since A is a Hermit ian operator ,  we can derive f rom (2.5) also a useful shifting 
relation: 

e~ Lab, x) = (fi2/~2)e~ ~ - 1, n~ + 1, Lab, x) 

= (fi/eO2'~,e~ n,~ + n~, Lab, x). (4.4) 
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In the case ~ =/3 thus many different overlap integrals are equal. On account of 
(2.16) a similar shifting of  a and b is possible, but the relation involves a 6j-symboI 
and is not so effective. For the two-centre integrals of the momentum operator 
related to the electric dipole transitions we get: 

( o Aan~am~] V. [ o B/3nbbrnv } 

L ~ ~  n n  L . . . .  [ a+eL+'~[e+lb\  
= ~ ,o t~  b, aoe, z~ZO~m,m,M ] ( rndzrnb ) (~aABlso lLM} ,  (4.5) 

where the invariants because of (2.17) are given by 

A~ Labe, AB) = <e/l 1 l/b>-~2a(n~, no + (b + 1 - e)/2, Lab, AB). (4.6) 

There are only two possible values of e, namely e = b _+ 1. 

With respect to our phase choice the reduced matrix dements of  three spherical 
harmonics are 

~'2(jkl ) (4.7) (][Iklll} = (-1)J+~+~[(2j + 1)(2k + 1 ) (2 /+  1)/4~1 000 " 

5. Nuclear Attraction Integrals 

As in [1 ] we begin with the interaction integral of a density and a point charge: 

[1/rc IoPc, n~prn~] = "~~ PC) (~PC [ soi pm~). (5.1) 

In order to evaluate the invariant ~.o we again use the relation 

[1/rc[AIoP~rn~pmv] [(A 1 ~re) [ oPan~prn~] 
-47r[3(r - C)]oP~n~pm~] 

-~ -47r( C l oPan~pm~} 
= - 4Tr(PC I ognppmp}. (5.2) 

(In [1] by a mistake the factor -4 r r  has been omitted.) On the other hand we get 
because of (2.5/1 I): 

[1/rc[ A]oP~%pm~] = ~2[1/rc ] oP(n~ § 1)pmp]. (5.3) 

This yields: 

[1/re ] oP~n~pm~] = ~ 4r, r- 2(PC I ocr(np - 1)pm~}. (5.4) 

Thus the invariant is very simple: 

z~ PC) = -47r~-2~0~ n~ - l p, PC). (5.5) 

Note that for np /> 1 the expression involves no higher transcendental functions! 
Thi~ is in contrast to the cases of [1, 2] again, where the Gaussian or oscillator 
functions are mixed with the incomplete gamma functions for all values of np. 
Moreover Eqs. (5.1) and (5.2) imply, for large distances PC, that the integrals vanish 
faster than PC -z- 1 as usual, namely according to the exponential factor in ~o ~ This 
allows to omit terms of  type (5.5) in the expansions of three- or four-centre integrals 
for sufficiently large distances. 
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The higher t ranscendental  functions are now restricted to the case: 

r~ R) = - 47r~- 2~o~ - lp, R) 

= - ~ - ~ (  - 2 ) ~  + ~ F ~ ( , ~ R  ~)  

= , r a - 2 ( - 2 ) V ( a R ) - 2 v - ~ , ( p  + 1/2, a2R2). (5.6) 

Since the three- and four-centre integrals involve expansions in T ~ this is a great  
computa t iona l  advantage.  The same argument  applies to Cartesian GTOs.  

Mult iplying (3.6) by 1/rc and integrating over r we derive the expression of  the 
three-centre nuclear at t ract ion integral: 

(oAcm~am~ll/rcloBfinobmo> = ~ ~~ Lab, Jp, AB, , \M,mvM]  
LJp 

[L+a+b'~<~. A B 
" ~Mmamfl B I sol JM'><O~PC I sol pmv>, 

with the invariants 

V ~ Lab, Jp, AB, PC) = 

and P = (~2A + f12B)/(~2 + fi2). 

- 4~rOje 2 ~ [NJnppLII~~ Itn~anbbL] 
Nnp 

�9 cp~ N J, AB)cp~ n v - lp, PC) 

(5.7) 

(5.8) 

6. The  T w o - E l e c t r o n  Integrals  

Again we start  with the two-centre density repulsion integral: 

[oPcrn~pmpll/r12]oO-cnaqmq] = ~,tz~ Lpq, PQ) (  pqL+) 
L \mvmqM 

.(~,,,PQ I solLM>. (6.1) 

The invariants are now given by 

td,(npnq, Lpq, PO) = - (2~2~:,d~%3)(2L + 1)-'2[NZ00Z]T~**lln~pn~qZ ] 

�9 ~o~ N - 1L, c o ) ,  (6.2) 

with N = n~ + nq + (p + q - L)/2. The derivation of  (6.2) uses (3.7) and runs 
as in [1]. 

Note  again: because of  N >1 np+ nqwe have N / >  1 for np 1> 1 orn~ /> 1, thus no 
incomplete g a m m a  functions are involved and the integral vanishes faster than any 
power  of  PQ for  large distances. The contrary  is true only for  np = nq = 0. But 
even in this case only one term of  (6.1), namely L = p + q, requires the g a m m a  
functions. The invariants tL ~ are obviously related to the invariants o f  the overlap 
integrals:  

i~~ Lpq, x) = - 4rr.r- 2s~ - 1), Lpq, x). (6.3) 

Thus a shifting relation like (4.4) also applies to t~ ~ 
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Now we can calculate the four-centre electron repulsion integral. Note that  the 
arrangement of  the orbitals is according to the Dirac notation, cf. (2.14) of [1]: 

(oAan~ama, oB~nbbm~[ 1/r12[oCTnccmc, o O3nadma) 

= ~_, ~ r176 Lac, L'bd, lpq, JJ', AC, BD, PQ) 
LL'JJ'pql 

"i a+cL+~[J+P+L][ b+dL'+]iJ'+q+L']( pql+) 
\m~mcM ] \mm~M] l, mbmaM' ] ~m'mqM'] \mpmqn 

�9 (~,rAC [ sol Jm)(~a~BD [ sol J'm')(pPQ 1 sol In), (6.4) 

with the abbreviations P = (o~2A + vzC)/(~ 2 + ~,2), Q = (t32B + 32D)/(t32 + 32), 
and p = [(~2 + ~,2)(/32 + 32)/(~2 +/32 + ~,2 + 32)]~/2. 

The invariants ~r ~ result from a two-fold application of  (3.6) to the two-centre 
densities and subsequent integration using (6.1): 

cr~ Lac, L'bd, lpq, JJ', x, y, z) 
= - (2~r2p/g%'3) �9 (2l + 1)-z/2. ~ ~ [NJ%PZll~o,~[ln~an~ct] 

Nr~pN'r~q 

�9 [g'Y'n~qL' II ~ II nabnadL']. [SlOOlll~oo~ II nvpnqql], rp ~ NJ, x) 
�9 ~o~ N'J', y).rp~ S - 1, l, z), (6.5) 

with S = nv + nq + ( p  + q - I) /2 ,  a = 0,~, "r = 0 ~ .  

7. Spin-Orbit Coupling 

As in [1] we get by partial integration the relation: 

(oA~n~am~][(V1/rc) x V]~]oBfinbbm~) 

= V~ ~ ( 11+ 1]<V,,oA,~n~am~]l/rc. V,,IoBpn~bmb>. (7.1) 
\/zl/~2/z] 

The right side is evaluated using (2.17), which results in a sum of  nuclear attraction 
integrals. We finally get the formula of the three-centre spin-orbit coupling integral 

(oA~n~am~l[(Vl ~re) • V].loBflnbbmb) 

( a+bL'~{J+lL+'~[ Jj+p+] = L~, r176176 Lab, Jjp, AB, PC). \m~mbM] \ MIzM l \Mmmp] 

�9 (~eAB] soljm)(O,aPC [ sol pmp) (7.2) 

with the invariants: 

f e la)  
~r~ Lab, Jjp, x, y)  = (47r/~c~)(2L + 1) ~ ~flb~<elllllaXflllllb> 

er L JILJ 
�9 ~/~ + (a + 1 - e)/2, nb + (b -I- 1 - f ) / 2 ,  Je~jp, x,y).  (7.3) 

On account of  the reduced matrix elements the sums run only over the values 
e = a •  l a n d f =  b • 1. 
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8. Angular Momentum 

For the calculation of the Zeeman effect, the magnetic circular dichroism and the 
magnetic dipole transitions one needs the integrals of the angular momentum 
operator with respect to a certain centre C, probably the molecular centre: 

Lo = [ro x p]  = LB + [(B - C)  x p]. (8.1) 

In virtue of  the second equation (8.1) one can shift the reference point of the angular 
momentum to an orbital centre. The integral of LB then is evaluated using 

LB~ [oBflnbbm~} = E (bilL1 [Ib~ ( b, + lb ~ , ioBfinbbm,b} ' (8.2) 
\mbtzmb] 

with the reduced matrix element 

(bJjLlll b} = h[b(b + 1)(2b + 1)] 1'~. (8.3) 

By (8.2) the integral of LB is reduced to overlap integrals. On the other hand the 
remaining integral is given by (4.5). Inserting all these relations into the integral of 
Lc we finally arrive at the formula: 

( o Aan~am~l L c, l oBflnbbmo} 

= Eco~a(nanb, Lab, AB)( a+b, L+ / b+, lb \ ~ AB 

+ Eo~e(nanb, Labe, A B ) ( l + l + l l (  a+eL+l(e+lb ~ 
Le \ Iz~lz21z / \m~meM / \rndz2rnb] 

�9 CB, I(~,BAB [ sol LM},  (8.4) 

where both invariants are related to the invariants of the overlap integrals: 

o~e(n~n~, Lab, AB) = h[b(b + 1)(2b + 1)]~/%~ Lab, AB), (8.5) 

oJ~(n=nb, Zabe, AB) = ~/3(h/i)(elllllb)e~ nb + (b + 1 - e)/2, Lab, AB). 
(8.6) 

9. Comparison with Cartesian Systems 

Since we have already compared the new results with those for the other types of  
spherical Gaussians, the consideration of the Cartesian systems remains. The 
comparison with the derivative system of Zivkovic and Maksic [3] may suffice 
because it is most similar to the present one. 

One main advantage of the present system is the fact that the integrals 
[1~re ] oPanppmp] reduce to elementary functions for np > 0. We have derived this 
result from the relation A(1/r) = -4rr3(r).  If we now define the Cartesian orbitals 
by 

(r [cAapqr} = (~/Ox)P(O/Oy)q(~/Oz) ~ exp ( - a2 ( r  - A) 2) (9.1) 

we get the relation 

r = IcAc~p + 2qr} + [cAapq + 2r} + leAapqr + 2} (9.2) 
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and the analogue of Eq. (5.4): 

-4~r~-2(PCI capqr} = [1~re I cPcrp + 2qr] + [1/rc I cPcrpq + 2r] 

+ [1/rc I cP~rpqr + 2]. (9.3) 

This means that only a certain sum of the integral type [1~re [ cPapqr] reduces to 
elementary functions, but the individual Cartesian integrals do not. Thus in the 
Cartesian system all nuclear attraction and electron-repulsion integrals involve 
more higher transcendental functions than in the analogous spherical system. The 

/ 

same applies to the system x~yqz ' exp (-~2r2).  

Another advantage of all the spherical orbital systems is the orientational simplicity. 
Consider a three-centre nuclear attraction integral in a tetrahedral molecule like 
CH~. The configuration is as follows: s-orbital at one H (point A), the point charge 
at another H (point C) and a p-orbital at the central C (point B): (oAOOOll/rc I 
oBOlm}. There are at first sight 36 different integrals of  this type in a tetrahedron. 
In the Cartesian case it is possible to show by several rotational operations that 
there are only two independent integrals, and it is even more laborious to express 
all 36 integrals explicitly as linear combinations of  these two. Because the lengths 
of  the vectors AB and PC are the same in all 36 triangles, the same result is pro- 
duced automatically in the spherical system. The formula (5.7) simply gives all the 
integrals as linear combinations of two independent invariants: 

(oAOOOll/rolonOlm} = (72~r)- z'2(~~ 101, 10, AB, PC)(AB 1 sol lm} 

+ ~1(00, 101,01, AB, PC) (PC I sol lm)).  (9.4) 

But one must admit that in the case of the more general integrals (oAnaOOll/rc] 
oBnblm) there are more than two invariants, though less than 36. It is a general 
fact that the three- and four-centre integrals of  spherical Gaussians involve a 
minimum of invariants if all main (but not the angular momentum) quantum 
numbers are zero. But since the increase of the main quantum number does not 
change the orbital type, it should not affect the number of independent invariants. 
This discrepancy is a challenge for further research. 
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